针对风电功率的波动性和随机性,提出一种结合时变滤波经验模态分解和改进麻雀搜索算法优化相空间 重构与回声状态网络的混合预测模型 。首先,采用时变滤波经验模态分解对风电功率数据进行分解;然后,利用相 空间重构确定回声状态网络的输入进行子序列预测;最后,累加预测值得到完整功率预测 。为增强模型性能,对麻 雀搜索算法进行改进,并应用于同步优化相空间重构与回声状态网络的参数 。实验结果表明,与相关模型相比,所 提模型在预测精度上有一定优势。
[1] Vahidzadeh M,Markfort C D. Modified power curves for prediction of power output of wind farms[J].Energies,2019, 12(9)∶1805.
[2] 叶林,赵金龙,路朋,等 . 考虑气象特征与波动过程关联的短期 风电功率组合预测[J]. 电力系统自动化,2021,45(4)∶54-62.
[3] 丁婷婷,杨明,于一潇,等 . 基于误差修正的短期风电功率 集成预测方法[J]. 高电压技术,2022,48(2)∶488-496.
[4] 胡 威 ,张 新 燕 ,李 振 恩 ,等 . 基 于 优 化 的 VMD-mRMR- LSTM 模型的短期负荷预测[J]. 电力系统保护与控制 , 2022,50(1)∶88-97.
[5] 胡帅,向月,沈晓东,等 . 计及气象因素和风速空间相关性的风 电功率预测模型[J]. 电力系统自动化,2021,45(7)∶28-36.
[6] 杨茂,董昊 . 基于数值天气预报风速和蒙特卡洛法的短期 风电功率区间预测[J]. 电力系统自动化,2021,45(5)∶79-85.
[7] Liu M D,Ding L,Bai Y L. Application of hybrid model based on empirical mode decomposition ,novel recurrent neural networks and the ARIMA to wind speed prediction[J]. Energy Conversion and Management,2021,233 ∶113917.
[8] Jahangir H,Golkar M A,Alhameli F,et al. Short-term wind speed forecasting framework based on stacked denoising auto- encoders with rough ANN[J]. Sustainable Energy Technolo-gies and Assessments,2020,38 ∶100601.
[9] Li L L,Liu Z F,Tseng M L,et al. Using enhanced crow search algorithm optimization-extreme learning machine model to forecast short-term wind power[J]. Expert Systems with Applications,2021,184 ∶115579.
[10] 李泽宇,郭创新,朱承治 . 采用GA-BPNN与TLS模型的风电 机组异常辨识方法[J]. 电力系统自动化,2020,44(9)∶95-102.
[11] Shi Z,Liang H,Dinavahi V.Direct interval forecast of uncer- tain wind power based on recurrent neural networks[J].IEEE
Transactions on Sustainable Energy,2017,9(3)∶1177-1187.
[12] Ding M,Zhou H,Xie H,et al.A gated recurrent unit neural networks based wind speed error correction model for short- term wind power forecasting[J].Neurocomputing,2019,365 ∶ 54-61.
[13] Ruiz-Aguilar J J,Turias I,González-Enrique J,et al.A per- mutation entropy-based EMD-ANN forecasting ensemble approach for wind speed prediction[J]. Neural Computing and Applications,2021,33(7)∶2369-2391.
[14] 刘亚珲,赵倩 . 基于聚类经验模态分解的 CNN-LSTM超短 期电力负荷预测[J]. 电网技术,2021,45(11)∶4444-4451.
[15] Hu H,Wang L,Tao R.Wind speed forecasting based on vari- ational mode decomposition and improved echo state net- work[J].Renewable Energy,2021,164∶729-751.
[16] 许美玲,王依雯 . 基于改进差分进化和回声状态网络的时 间序列预测研究[J]. 自动化学报,2021,47(7)∶1589-1597.
[17] 王振浩,王翀,成龙,等 . 基于集合经验模态分解和深度学习的光伏功率组合预测[J/OL].高电压技术[2022-04-12].
[18] 胡梦月,胡志坚,仉梦林,等 .基于改进AdaBoost.RT和KELM 的风功率预测方法研究[J]. 电网技术,2017,41(2)∶536-542.
[19] Samadianfard S,Hashemi S,Kargar K,et al. Wind speed prediction using a hybrid model of the multi-layer percep- tron and whale optimization algorithm[J]. Energy Reports, 2020,6 ∶1147-1159.
[20] Xiong D,Fu W,Wang K,et al.A blended approach incorpo- rating TVFEMD,PSR,NNCT-based multi-model fusion and hierarchy-based merged optimization algorithm for multi-step wind speed prediction[J]. Energy Conversion and Management,2021,230 ∶113680.
[21] Fu W,Zhang K,Wang K,et al.A hybrid approach for multi- step wind speed forecasting based on two-layer decomposi- tion,improved hybrid DE-HHO optimization and KELM[J]. Renewable Energy,2021,164∶211-229.
[22] 琚垚,祁林,刘帅 . 基于改进乌鸦算法和ESN神经网络的短 期风电功率预测[J]. 电力系统保护与控制,2019,47(4)∶58-64.
[23] Xue J,Shen B.A novel swarm intelligence optimization ap- proach:sparrow search algorithm[J]. Systems Science & Control Engineering,2020,8(1)∶22-34.
[24] Ma J,Hao Z,Sun W. Enhancing sparrow search algorithm via multi-strategies for continuous optimization problems[J]. Information Processing & Management,2022,59(2)∶102854.
[25] Mirjalili S,Lewis A. The whale optimization algorithm[J].Advances in engineering software,2016,95∶51-67.