高压半导体器件是电力电子装备的核心功率器件,其可靠性对系统安全运行至关重要 。封装绝缘材料是 电力电子器件中最为重要的绝缘组件,它的特性决定了高电压功率器件的封装可靠性 。硅凝胶具有优异的综合性 能,被广泛应用在高压半导体器件的封装中,而目前对其在脉冲条件下的绝缘强度尚不明确,所以有必要对脉冲电 场下的硅凝胶的绝缘劣化特性进行研究 。电树枝劣化特性是判断材料绝缘劣化情况的主要方法之一,所以本文通 过搭建电热耦合下的电树枝测试系统,主要探究不同脉冲电压频率,脉冲电压上升沿以及不同温度下的硅凝胶电 树枝劣化特性 。频率的增大、上升沿的缩短和温度的升高从不同角度和程度促进了电树枝的起始和生长;硅凝胶 具有一定的自恢复性能,是影响其绝缘特性的重要因素之一。
[1] 李鹏,谷琛,陈东,等 .±1 500 kV特高压直流输电技术前期 研究[J]. 高电压技术,2017,43(10)∶3139-3148.
[2] 刘振亚 . 特高压电网[M]. 北京:中国经济出版社,2005.
[3] 王鹏,赵政嘉,刘雪山,等 . 电力电子设备中的电气绝缘问 题[J]. 高电压技术,2018,44(07)∶2309-2322.
[4] 李文艺,王亚林,尹毅 . 高压功率模块封装绝缘的可靠性研 究综述[J]. 中国电机工程学报,2022,42(14)∶5312-5326.
[5] Hagiwara M,Akagi H. Control and experiment of pulse width-modulated modular multilevel converters[J]. IEEE t ransactions on power electronics,2009,24(7)∶1737-1746.
[6] R. Khazaka,L. Mendizabal,D. Henry,et al. Survey of high temperature reliability of power electronics packaging com- ponents[J].IEEE transactions on power electronics,2015,30
(5)∶2456-2464.
[7] Passmore B,O'Neal C. High-voltage SiC power modules for 10-25 kV applications[J]. Power Electronics Europe Mag,
2016,1 ∶22-24.
[8] Zhang B,Ghassemi M,Zhang Y. Insulation Materials and Systems for Power Electronics Modules:AReview Identifying Challenges and Future Research Needs[J].IEEE Transactions on Dielectrics and Electrical Insulation,2021,28(1)∶290-302.
[9] Zhong X,Wu X,Zhou W,et al.An All-SiC High-Frequency Boost DC-DC Converter Operating at 320 °C Junction Tem- perature[J]. IEEE Transactions on Power Electronics,2014, 29(10)∶5091-5096.
[10] 陈日荣,曾福平,苏大智等 . 高压大功率 IGBT封装用有机 硅凝胶热老化特性分析 [J]. 南昌大学学报(理科版), 2022,46(02)∶248-255.
[11] Mason J H.The deterioration and breakdown of dielectricsresulting from internal discharges[J]. Proceedings of the IEE - Part I:General,1951,98(109)∶44-59.
[12] Ieda M,Nawata M. A consideration of treeing in polymers [C]. Conference on Electrical Insulation & Dielectric Phe- nomena Report,2016.
[13] 郑晓泉,谢安生,李盛涛 . 高聚物中的电树枝老化规律的 研究[C]. 中国电工技术学会学术会议,2004.
[14] Ying L,Xiaolong C. Electrical Tree Initiation in XLPE Cable Insulation by Application of DC and Impulse Voltage[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013,20(5)∶1691-1698.
[15] Wang T,Wang J,Yan P,et al. Influence of frequency on electrical tree growth of Nylon 6 under nanosecond pulses [C].2015 IEEE 11th International Con-ference on the Proper- ties and Applications of Dielectric Materials( ICPADM), 2015∶792-795.
[16] Liu X,Wang J,Zhang R,et al.Electrical tree characteristics under AC and repetitive pulse voltages in wind turbine gen- erator composite insulation[J]. IEEE Transactions on Di- electrics and Electrical Insulation,2020,27(3)∶1007-1014.
[17] Wang P,Cavallini A,Montanari G C,et al. Effect of rise time on PD pulse features under repetitive square wave volt- ages[J].IEEE Transactions on Dielec-trics and Electrical In- sulation,2013,20(1)∶245-254.
[18] 彭苏蔓 ,祝曦 ,吴建东 ,等 . 温度和电场对 XLPE 与纳米MgO/XLPE 电树枝生长过程中局部放电特性的影响[J]. 中国电机工程学报,2020,40(12)∶4033-4043.
[19] 周远翔,陈明,张云霄,等 . 流场下温度对硅橡胶电树枝引 发特性的影响[J]. 高电压技术,2018,44(12)∶3784-3790.
[20] Du B X,Su J G,Han T. Temperature-dependent electrical tree in silicone rubber under repetitive pulse voltage[J].IEEE Transactions on Dielectrics and Electrical Insulation,2017, 24(4)∶2291-2298.
[21] Mancinelli P,Cavallini A,Chalashkanov N,et al. Electrical treeing in silicone gel under square voltage: Frequency,rise
time and crosslinking influence[C].2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena(CEIDP).To- ronto,Canada:IEEE,2016∶979-982.
[22] Fujii M,Ihori H,Hyeon-Gu J. Dependence of pearl-chain type tree in silicone gel on the waveform and the frequency of applied voltage[C].017 Interna-tional Symposium on Elec- trical Insulating Materials(ISEIM).Toyohashi,Japan:IEEE, 2017∶727-730.
[23] Nakamura S,Kumada A,Hidaka K,et al. Electrical treeing in silicone gel under repetitive voltage impulses[J]. IEEE Transactions on Dielectrics and Elec-trical Insulation, 2019,26(6)∶1919-1925.
[24] Zhang W,Wang J,Zhang D D,et al. Experimental method of electrical tree initiation of polymer under nanosecond pulse [J].Intense laser and particle beam,2011,23(4)∶1117-1122.