由于其电导率调制效应,与碳化硅(SiC)金属-氧化物-半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)相比,SiC 绝缘栅双极型晶体管(IGBT)更适合于高压大电流应用,例如柔性高压直 流输电(HVDC)。然而,对于数百千伏的直流母线电压,单只器件仍难以满足要求,多只器件串联是一种解决方 案 。 由于电路特性的差异,会产生电压不平衡,因此,本文研究了基于单电压均衡栅极驱动器方案的双管串联 10 kV / 12.5 A SiC IGBT 。首先,分析了双管串联 SiC IGBT 的工作过程 。随后建立了基于 SiC IGBT 行为模型的仿真电 路,搭建了实验测试平台 。在 6.5 kV/ 6A 条件下,实现了 3.69% 的电压不平衡率 。此外,在不同直流母线电压和 PWM 周期下的实验结果证明了单电压均衡栅极驱动器方案的鲁棒性。
[1] X. She,A.Q.Huang,Ó .Lucía,et al. "Review of silicon carbide power devices and their applications,"[J]. in IEEE Transac- tions on Industrial Electronics,vol.64,no. 10,pp.8193-8205, Oct. 2017,doi: 10. 1109/TIE.2017.2652401.
[2] J.Biela,M.Schweizer,S.Waffler,et al."SiC versus Si—Evalu- ation of potentials for performance improvement of inverter and DC-DC converter systems by SiC power semiconductors, "[J]. in IEEE Transactions on Industrial Electronics,vol. 58,no.7,pp.2872-2882,July2011,doi:10. 1109/TIE.2010.2072896.
[3] G. Wang . "Static and dynamic performance characterization and comparison of 15 kV SiC MOSFET and 15 kV SiC n-IG BTs,"[J].2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC's(ISPSD),2015,pp.229-232, doi:10. 1109/ISPSD.2015.7123431.
[4] A. Kadavelugu. "Characterization of 15 kV SiC n-IGBT and its application considerations for high power converters,"[J]. 2013 IEEE Energy Conver-sion Congress and Exposition, 2013,pp.2528-2535,doi:10. 1109/ECCE.2013.6647027.
[5] E. V. Brunt. "27 kV 20 A 4H-SiC n-IGBTs"[J]. Mater. Sci. Forum,vol. 821 -823,pp. 847-850,Jun. 2015.
[6] S. Madhusoodhanan . "Solid-State Transformer and MV Grid Tie Applications Enabled by 15 kV SiC IGBTs and 10 kV SiC MOSFETs Based Multilevel Converters,"[J]. in IEEE Transactions on Industry Applications,vol.51,no.4,pp.3343- 3360,July-Aug.2015,doi: 0. 1109/TIA.2015.2412096.
[7] M.Hinojosa,H.O'Brien,E.Van Brunt,et al. "Solid-state Marx generator with 24 kV 4H-SIC IGBTs," [J].2015 IEEE Pulsed Power Conference(PPC),2015,pp. 1-5,doi: 10. 1109/PPC. 2015.7297038.
[8] L.Han,L.Liang,Y.Kang,et al."A Review of SiC IGBT: Mod- els,Fabrications,Characteristics,and Applications,"[J]. in IEEE Transactions on Power Electronics,vol. 36,no.2,pp. 2080-2093,Feb.2021,doi:10. 1109/TPEL.2020.3005940.
[9] K. Vechalapu,S. Bhattacharya,E. Van Brunt,et al. "Compara-tive evaluation of 15 kV SiC MOSFET and 15 kV SiC IGBT for medium voltage converter under same dv/dt conditions," [J].2015 IEEE Energy Conversion Congress and Exposition (ECCE),2015,pp.927-934,doi:10. 1109/ECCE.2015.7309787.
[10] K. Vechalapu,A. Negi and S. Bhattacharya,"Comparative performance evaluation of series connected 15 kV SiC IGBT devices and 15 kV SiC MOSFET devices for MV power con- version systems,"[J]. 2016 IEEE Energy Conversion Cong- ress and Exposition(ECCE),2016,pp. 1-8,doi: 10. 1109/EC CE.2016.7854936.
[11] K. Vechalapu,A. Negi and S. Bhattacharya. "Performance evaluation of series connected 15 kV SiC IGBT devices for MV power conversion systems," [J].2016 IEEE Energy Con- version Congress and Exposition(ECCE),2016,pp.1-8,doi: 10. 1109/ECCE.2016.7855343.
[12] R. Wang,L. Liang,Y. Chen,et al. "A Single Voltage-Balancing Gate Driver Combined With Limiting Snubber Circuits for Series-Connected SiC MOS-FETs,"[J]. in IEEE Journal of / Emerging and Selected Topics in Power Electronics,vol.8, no. 1,pp. 465-474,March 2020,doi: 10. 1109/JESTPE. 2019. 951736.
[13] L.Han,L.Liang andY.Kang. "A SiC IGBT Behavioral Model with High Accuracy and Fast Convergence,"[J].2020 IEEE Workshop on Wide Band-gap Power Devices and Applica- tions in Asia(WiPDA Asia),2020,pp.1-6,doi:10. 1109/WiP DAAsia49671.2020.9360262.