受变电站复杂环境的影响,无人机在变电站巡检时的飞行安全问题变得日益突出 。 目前,无人机的飞行状 态监测主要采用飞行控制系统,缺乏对飞行数据,特别是飞行轨迹数据的深入分析 。为了更深入地挖掘飞行控制 系统的数据,文中提出了异常检测和轨迹预警方法 。首先,基于子空间学习方法,学习保存在子空间中的原始数据 的局部时序信息,不仅降低了数据的计算复杂度,而且促进了异常数据的发现;其次,通过测量数据子空间向量的 变化来实现飞行数据的异常检测;最后,利用基于时间序列的 LSTM 神经网络实现无人机的飞行轨迹预测,只对会 导致无人机飞行安全的异常数据进行预警,提高了预警效率。
[1] Schumann J,Rozier K Y,Reinbacher T,et al. Towards real- time ,on-board,hardware-supported sensor and software health management for unmanned aerial systems[J]. Interna- tional Journal of Prognostics and Health Management,2015, 6(1)∶1-27.
[2] MELNYK I,YADAV P,STEINBACH M,et al.Detection of precursors to aviation safety incidents due to human factors [C]//Workshops of the 2013 IEEE International Conference on Data Mining. Piscataway:IEEE,2014∶407-412.
[3] KhalastchiE,Kaminka G A,Kalech M,et al.Online anomaly detection in unmanned vehicles[C]//Adaptive Agents and Multi-Agents Systems. International Foundation for Autono-mous Agents and Multiagent Systems,2011. DOI:10.5555/ 2030470.2030487.
[4] Freeman,P,Pandita,etal. Model-Based and Data-Driven Fault Detection Performance for a Small UAV[J]. IEEE/ ASME transactions on mechatronics,2013(4)∶18.
[5] HATICE V D,MURAT T,NIHAN K.Unmanned aerial vehi cles(UAVs)battery power anomaly detection using temporal convolutional network with simple moving average algorithm [C]//Proceedings of the 2022 International Conference on In novations in Intelligent Systems and Applications(INISTA), Piscataway:IEEE,2022 ∶1-5.
[6] You J T,LIANG J,LIU D T. An adaptable UAV sensor data anomaly detection method based on TCN model transferring
[C]// Proceedings of 2022 Prognostics and Health Manage- ment Conference.Piscataway:IEEE,2022∶73-76.
[7] Y. He,Y. Peng,S. Wang,et al. "ADMOST:UAV flight data anomaly detection and mitigation via online subspace track - ing,"in IEEE transactions on instrumentation and measure- ment,vol.68,no.4,pp. 1035-1044,April 2019,doi:10. 1109/ TIM.2018.2863499.
[8]李苗 .基于GWO-LSTM算法的船舶轨迹预测研究[J].珠江水运, 2024,(12)∶49-51. DOI:10. 14125/j. cnki. zjsy. 2024.12.043.
[9] 张邦楚,杨朋坤,梁毅雍,等 .基于LSTM的空战无人机实时航迹 预测[J]. 战术导弹技术,2024,(03)∶72-83. DOI:10. 16358/j. issn.1009-1300.20240001.
[10] Shi Z,Xu M,Pan Q,et al.LSTM-based flight trajectory pre- diction[C]//2018 International Joint Conference on Neural Networks(IJCNN).IEEE,2018 ∶1-8.