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摘 要：随着电力系统规模扩张与复杂度攀升，精准的超短期电力负荷预测对系统稳定运行和经济调度的重要性日

益凸显。针对基于径向基函数（RBF）核最小二乘支持向量回归（LSSVR）模型的局限，文中创新性提出融合各向异性

RBF核的 LSSVR模型（ARBF-LSSVR），并引入沙猫群优化算法（SCSO）进行参数寻优，构建 SCSO-ARBF-LSSVR模

型。基于江西省 2024年 9月两个行业的96点数据集，对所提出模型的有效性展开验证。实证结果显示：在1步、3步
负荷预测中，SCSO-ARBF-LSSVR模型的预测表现均显著优于其他基准模型。这一结果充分说明SCSO-ARBF-LSS⁃
VR模型优异的预测能力与良好的应用前景，为电力系统的高效运行与科学规划提供强有力的技术支撑。
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0 引言

随着全球能源结构转型的加速推进与电力系统智

能化水平的持续升级，电力负荷预测作为保障电网安全

稳定运行、实现经济调度及提升能源利用效率的核心技

术，其精度要求愈发严苛。超短期电力负荷预测直接关

系到机组启停计划的制定、电力交易策略的优化以及配

电网运行的调控，是电力系统调度决策不可或缺的关键

依据[1]。然而，受气象因素、经济状况、电价波动、用户

用电行为等多维度非线性因素的耦合影响，短期负荷呈

现出显著的强波动性与复杂非线性特征，这不仅对短期

负荷数据分析工作带来了巨大挑战，也使得开发精准稳

定的预测模型成为该领域研究的核心目标。

目前，短期和超短期电力负荷预测模型大致可分

为统计模型与机器学习方法两大类。统计方法在处理

线性关系时表现出色，但面对电力负荷数据中普遍存

在的非线性特征往往难以胜任[2]；在机器学习模型中，

神经网络凭借其多层结构能够有效捕捉并建模复杂的

非线性关系，在（超）短期电力荷预测中得到了广泛应

用[3]。众多学者围绕卷积神经网络（convolution neural

network，CNN）[4]、长短期记忆模型（long short-term

memory，LSTM）[5-6]、门控循环单元结构（gated recur‐

rent unit，GRU）[7]等网络结构开展电力负荷预测研究，

并取得了优异的实验结果。大量实验结果表明，神经

网络模型在捕捉负荷非线性特征方面具有显著优势。

但与此同时，神径网络模型也存在局部最小值陷阱、过

拟合风险以及对计算资源需求较高等问题。

核方法作为机器学习中另一类常用的预测方法，是

连接线性模型与非线性问题的关键技术。其中，支持向

量回归模型（support vector regression，SVR）[8-9]、最小

二乘支持向量回归模型（least squares support vector re‐

gression，LSSVR）[10-13]、核极限学习机模型（kernel ex‐

treme learning machine，KELM）[14]等在短期电力负荷

预测中应用广泛。在这些模型中，基于径向基函数核

（radial basis function，RBF）的 LSSVR 模 型（RBF-

LSSVR）因具备泛化能力优异、处理高维与非线性问题

能力强、计算效率高、鲁棒性好等优点，应用最为普及。
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但由于传统 RBF 核函数基于各向同性假设，其表达能

力受到限制，进而制约了 RBF-LSSVR 模型的预测

性能[15]。

为了克服传统 RBF 核函数的局限性，文中提出

一种融合各向异性 RBF 核的 LSSVR 模型（ARBF-

LSSVR）。通过沙猫群优化算法（SCSO）对其进行超

参数寻优，构建 SCSO-ARBF-LSSVR 模型，旨在最大

限度地提升 LSSVR 模型在超短期电力负荷预测中

的预测能力。

1 基本方法

1.1 融合各向异性径向基函数的最小二乘支持向量

回归

最小二乘支持向量回归模型（LSSVR）作为支持

向量回归模型的一个变体，采用最小二乘损失函数，将

优化问题转化为求解线性方程组问题，大大提高了求

解速度，更适合于大样本回归问题。对于给定的一个

训练数据集{ }xi,yi

N

i = 1
，其中，实例 xi ∈ Rn 为 n维特征向

量，yi ∈ R为目标值。LSSVR模型试图构建一个回归

函数：

y = wTϕ ( x ) + b （1）

式中：wT 为权重；ϕ ( x )为原始输入空间 x映射到高维

特征空间的映射；函数，b为偏置。

基于结构风险最小化原理，LSSVR 模型的目标

函数可表示为：

min
w,b,c

J (w,b,ξ ) =
1
2
 w

2
+

1
2

C∑
i = 1

N

ξ 2
i

s.t.yi = wT ϕ ( xi) + bξ1 ,i = 1,2,⋯,N.
（2）

式中：ξ1 ( i = 1,2,⋯,N )为预测误差；C为惩罚系数。

结合拉格朗日乘子法和核技巧得到最终的回归

函数：

未描述

f ( x ) =∑
i = 1

N

α i κ ( x,xi) + b （3）

式中：αi为权向量；κ ( x,xi) = ϕ ( x )ϕ ( xi)为满足 Mer‐

cer条件的核函数；b为偏置向量。

在 LSSVR 模型中，常用的核函数有径向基函数

（RBF）核函数、线性核函数和多项式核函数等。其

中，RBF核函数由于具有非线性映射能力强、泛化性

能好、适用范围广等优点而得到广泛应用。RBF核函

数形式为：

κ ( x,xi) = exp ( )-γ x - y
2

,γ > 0. （4）

但是，RBF核函数基于各向同性假设，即所有输

入具有相同的重要性，这未必符合现实。特别是对于

时间序列数据，较近的历史数据对预测的作用往往更

大。为弥补这一不足，文中创新性地提出各向异向

RBF 核函数以提升 LSSVR 模型的预测能力。具体

而言，各向异性RBF核函数具有如下形式：

κ ( x,xi) = exp
é
ë
ê

ù
û
ú-∑

k = 1

n

γk ( xk - yk)
2 ,γ > 0 (k = 1,2,⋯,n ).（5）

从公式（4）和公式（5）的数学关系可以看出，传统

的RBF核函数实际上是各向异性RBF核函数的一种

特例。具体而言，各向异性 RBF 核退化为各向同性

RBF 核函数。这从理论上说明，各向异性 RBF 核函

数比传统 RBF 核函数具有更广泛的适用性，而融合

各向异性 RBF 核的 LSSVR 模型具有更好的预测性

能。为方便起见，记基于RBF核函数的LSSVR模型

为RBF-LSSVR，而记融合各向异性RBF核的LSSVR

模型为ARBF-LSSVR。

1.2 提出模型

ARBF-LSSVR 模型由于采用各向异性假设，参

数个数随着相空间嵌入的增加而增加。可以肯定的

是，ARBF-LSSVR 模型的预测表现和超参数的选择

息息相关。文中采用Seyyedabbasi和Kiani于 2023年

提出的沙猫群优化算法（sand cat swarm optimiza‐

tion，SCSO）优化 ARBF-LSSVR 模型的惩罚系数 C

和各向异性超参数 g1,g2,…，gn，构建出 SCSO-ARBF-

LSSVR 模型。建模流程如图 1 所示，具体的步骤

如下：

1）根据XGBoost回归模型的特征重要性确定相

空间维数，对给定输入数据进行相空间重构。

2）运用 Min-Max 方法对输入数据进行归一化

处理。

3）使用 SCSO优化算法对ARBF-LSSVR模型进

行超参数寻优，根据训练集数据构建 SCSO-ARBF-

LSSVR模型。

4）应用SCSO-ARBF-LSSVR模型对测试集数据

进行预测，输出预测结果。
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图1 SCSO-ARBF-LSSVR模型的框架图

2 案例与结果分析

2.1 数据来源与描述性统计

为验证提出模型的有效性，文中选择江西省

2024年 9月 1日—15日非金属矿物制品业和计算机、

通信和其他电子设备制造业（简称电子设备制造业）

的 96点负荷数据（15×96=1440条数据）展开检验，并

按 4∶1的比例划分为训练集和测试集。非金属矿物

制品业和电子设备制造业的原始数据如图 2 所示。

可以看出，两个数据集曲线都表现出强周期性和剧烈

的波动性，给准确预测和模型表现带来巨大挑战。表

1 给出了非金属矿物制品业和电子设备制造业数据

集的描述性统计。为了抑制模型过拟合，提升模型的

泛化能力，文中采用3折交叉验证优化模型超参数。

图2 非金属矿物制品业和电子设备制造业负荷的数据曲线

表1 非金属矿物制品业和电子设备制造业负荷数据集

描述性统计

数据集

非金属矿物制品业

电子设备制造业

样本数

1440

1440

均值

172.69

153.41

标准差

27.75

20.83

中位数

180.31

146.67

最小值

112.68

107.65

最大值

210.13

191.04

图3 基于XGBoost非金属矿物制品业数据集和电子设备

制造业数据集的嵌入维数选择

2.2 嵌入维数选择

嵌入维数的选择是决定模型预测表现的关键超

参数之一。文中通过XGBoost模型的特征重要性来

选择合适的嵌入维数，即累积特征重要性达到 95%

对应的滞后期数为嵌入维数。从图 3可以看出，非金

属矿物制品业的嵌入维数应选为 30，电子设备制造

业的嵌入维数则为 20。

2.3 评价指标

文中采用均方根误差（R）、平均绝对误差（A）、平

均绝对百分比误差（P）、可决系数（C）等 4 个统计指

标来评价预测模型的性能，具体定义如下：

R =
1
N∑i = 1

N

( yi - ŷi)
2 （6）

A =
1
N∑i = 1

N

|| yi - ŷi （7）

P =
1
N∑i = 1

N |

|
||

|

|
||
yi - ŷi

yi

× 100% （8）

C = 1 -
∑
i = 1

N

( yi - ŷi)
2

∑
i = 1

N

( yi -
-
y

i
)2

（9）

式中：yi 为真实负荷数据；
-
y 为真实负荷数据的平均

值；ŷi为预测值；N为预测序列长度。

2.4 与SCSO-RBF-LSSVR模型的预测结果对比

为验证 SCSO-ARBF-LSSVR 模型的有效性，文

中首先设计与基于 SCSO 优化算法的 RBF-LSSVR

模型（SCSO-RBF-LSSVR）进行对比实验，实验结果

如表 2 所示。从评价指标对比来看，无论是非金属矿

物制品业测试集还是电子设备制造业测试集，SCSO-

ARBF-LSSVR 模型均展现出更优的预测性能。对于

非金属矿物制品业测试集，SCSO-ARBF-LSSVR模型

的 R、A 和 P 指标较 SCSO-RBF-LSSVR 模型分别降

低 2.77%、4.69% 和 4.09%；对于电子设备制造业测试

集，上述三项指标的降幅则分别为 2.85%、1.02% 和

0.75%。值得注意的是，两个模型在两个数据集上的

C 值均接近 1，但 SCSO-ARBF-LSSVR 模型的表现更

为突出（分别达到 0.9904 和 0.9912）。这一结果充分

表明，相较于传统 RBF，各向异性 RBF 显著增强了

LSSVR 模型对负荷特征的捕捉能力，进而使 SCSO-

ARBF-LSSVR 模型在超短期负荷预测任务中展现出

更优异的性能，有力验证了文中提出模型的有效性。

SCSO-ARBF-LSSVR 模型在非金属矿物制品业

测试集和电子设备制造业测试集的预测结果如图 4

所示。从可视化结果中可以清晰观察到，提出模型的

预测曲线与实际负荷曲线高度重合。这种出色的拟

合效果进一步凸显了提出模型的适应性与可靠性。
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表2 SCSO-ARBF-LSSVR模型和SCSO-RBF-LSSVR
模型的预测表现比较

数据集

非金属矿物制品业

电子设备制造业

模型

SCSO-ARBF-LSSVR

SCSO-RBF-LSSVR

SCSO-ARBF-LSSVR

SCSO-RBF-LSSVR

R

2.7188

2.7963

1.6257

1.6733

A

2.1069

2.2106

1.1704

1.1824

P /%

1.1956

1.2466

0.7537

0.7664

C

0.9904

0.9898

0.9912

0.9907

图4 SCSO-ARBF-LSSVR 模型在不同行业测试集的预测

结果（左：非金属矿物制品业；右：电子设备制造业）

2.5 与其他模型预测结果比较

为进一步验证提出模型在预测超短期负荷问题上

的优越性，文中将其与核极限学习机（KELM）、门控

循环单元（GRU）和长短时记忆神经网络（LSTM）分

别进行1步和3步预测对比实验。为了保证比较的公

平性，采用 SCSO 算法优化 KELM 模型（记为 SCSO-

KELM）。

表 3列出 4个模型在两个行业的 1步预测表现。

从数据来看，SCSO-ARBF-LSSVR 模型在两个数据集

上的表现均最为出色，SCSO-KELM 模型紧随其后，

GRU 模型的表现位列第三，而 LSTM 模型的表现最

差。相较于SCSO-KELM 模型，提出模型在非金属矿

物制品业测试集的R、A 和P 分别降低 14.93%、7.38%

和 9.25%；在电子设备制造业测试集的三个指标分别

降低7.16%、4.67%和4.46%。为了直观展示提出模型

在 1步预测中的预测效果，绘制四个模型在两个数据

集的预测曲线和预测误差，分别如图 5 和图 6 所示。

从误差图可以看出，SCSO-ARBF-LSSVR 模型的预测

表现最好，尤其是波峰和波谷位置预测误差降低明

显。这些结果说明各向异性RBF具有更好的局部特

征提取能力，从而提升模型的预测能力。

在 3步预测中，SCSO-ARBF-LSSVR模型的预测

能力继续保持领先，预测表现如表 4所示。对于非金

属矿物制品业，LSTM 模型的预测表现排名第二，而

GRU 模型和 SCSO-KELM 模型则依次排在后两位。

相较于 LSTM 模型，SCSO-ARBF-LSSVR 模型的 R、

A、和P分别降低32.15%、27.47%和29.14%，而C则提

升3.44%；对于电子设备制造业，SCSO-KELM模型表

现紧随 SCSO-ARBF-LSSVR 模型，而 GRU 模型和

LSTM 模型的表现依次排在最后两位。与 SCSO-

KELM 模型表现相比，提出模型的 R、A、和 P 分别降

低 9.30%、17.29%和 16.35%，而C则提升 1.08%。图 7

和图 8分别呈现了四个模型在两个数据集上的 3 步

预测结果。分析可见，在负荷相对平稳的场景下，所

提出模型的表现更为突出；而面对高频波动的情况

时，该模型同样具备明显优势。

理论上来说，各向异性 RBF 核函数具备明显的

局部特征捕捉能力，但其效能的发挥取决于超参数的

选择。综合两个数据集在 1 步及 3 步预测中的结果

可知，SCSO 算法在 ARBF-LSSVR 模型的超参数寻

优方面表现突出。

表3 不同模型的1步预测表现对比

数据集

非金属矿物制品业

电子设备制造业

模型

SCSO-ARBF-LSSVR

SCSO-KELM

GRU

LSTM

SCSO-ARBF-LSSVR

SCSO-KELM

GRU

LSTM

R

2.7188

3.1961

3.7763

4.2962

1.6257

1.7510

2.3919

2.5891

A

2.1069

2.2749

2.6736

3.0252

1.1704

1.2321

1.6745

1.7840

P /%

1.1956

1.3175

1.5632

1.7556

0.7537

0.7889

1.0590

1.1247

C

0.9904

0.9867

0.9814

0.9759

0.9912

0.9898

0.9810

0.9777

图5 不同模型在非金属矿物制品业的1步预测结果和误差

图6 不同模型在电子设备制造业的1步预测结果和误差
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表4 不同模型的3步预测表现对比

数据集

非金属矿物制品业

电子设备制造业

模型

SCSO-ARBF-LSSVR

SCSO-KELM

GRU

LSTM

SCSO-ARBF-LSSVR

SCSO-KELM

GRU

LSTM

R

4.5913

7.4323

7.3884

6.7666

3.7762

4.1634

5.0815

5.3475

A

3.5678

5.3638

5.6342

4.9189

2.5123

3.0373

3.7146

3.8306

P /%

2.0331

3.0975

3.2744

2.8690

1.6410

1.9617

2.3593

2.4460

C

0.9725

0.9279

0.9287

0.9402

0.9528

0.9426

0.9145

0.9053

图7 不同模型在非金属矿物制品业的3步预测结果和误差

图8 不同模型在电子设备制造业的3步预测结果和误差

3 结语

针对基于各向同性 RBF 核的 LSSVR 模型存在

的局限性，文中创新性地提出融合各向异性 RBF 核

的 LSSVR 模型，并采用沙猫群优化算法（SCSO）开

展参数空间寻优，构建得到 SCSO-ARBF-LSSVR 模

型。通过两组电力负荷数据集的超短期负荷预测实

验，对所提模型的有效性进行验证，研究结论如下：

1）各向异性核策略使文中提出的模型建立在继

承传统 LSSVR 模型强泛化能力等优势的基础上，进

一步提升了对局部非线性特征的捕捉能力。

2）SCSO-ARBF-LSSVR 模型在超短期电力负荷

预测任务中的表现显著优于基准学习模型，充分验证

了其在实际应用中的有效性与可靠性，为电力负荷的

精准预测提供了全新思路。
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