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摘 要：现有智能变电站虚端子主要采用人工匹配，该方式存在过程繁琐、效率低、错误率高等问题，难以满足智能

变电站的大规模发展，迫切需要实现虚端子的自动连接。文中提出基于改进双曲正余弦算法与综合相似度的自动

连接方法。该方法首先构建综合相似度模型，能够综合考虑虚端子命名元素的字符差异与语义关联；其次，构建距

离权重向量优化模型，以权重向量为优化变量，最大化虚连接正确匹配数为目标函数；最后，采用改进双曲正余弦

算法求解最优距离权重向量，最后以220kV变电站为案例验证所提方法显著提升了连接效率。
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0 引言

智能变电站虚端子连接作为二次设计的核心环

节，当前主要依赖人工匹配。该方式存在设计效率

低、错误率高、工作量大等方面问题[1-2]。

现有研究针对这些问题给出了一些解决方案。王

文琪等人提出基于距离权重向量优化模型的虚端子自

动连接方法[3]，基于编辑距离相似度，通过粒子群算法

优化距离权重向量，实现结构化属性的字符级匹配。

范卫东等人提出一种基于历史数据语义相似度的虚端

子自动连接方法[4]，通过中文词向量技术，将每个中文

词语编码为128维的数字向量，通过两个虚连接向量的

余弦距离表示它们的语义相似度。然而，虚端子作为

混合文本唯一标识的通信逻辑节点，其结构包含数据

属性与中文描述，同时具有结构化命名规范与自然语

言灵活性[5]。这一特征导致其自动连接需同时解决数

据属性的字符差异和中文描述的语义关联问题。李腾

等人引入莱文斯坦距离计算虚端子相似度，通过烟花

算法优化权重向量，实现虚端子自动连接[6]，但烟花算

法容易陷入局部最优，故距离权重向量无法更优。

针对上述不足，文中提出基于改进双曲正余弦算法

与综合相似度的虚端子自动连接方法，首先提出综合相

似度模型，联合编辑距离相似度与余弦距离相似度，能

够同时考虑数据属性的字符差异和功能描述的语义关

联；其次运用SCHO-GO算法计算距离权重向量；最后

以一个220 kV的变电站为例对所提方法进行验证。

1 虚端子自动连接匹配模型

文中提出一种综合相似度模型作为虚端子相似

度量化模型，该模型融合编辑距离[3]与余弦距离[4]两

种相似度计算方法，分别针对虚端子命名中不同类型

的信息特征计算相似性。通过编辑距离量化字符串

类型属性（如逻辑设备 LD、数据对象 DO、数据属性

DA 等）的字符差异，借助余弦距离衡量中文描述

（DES）经词向量转化后的向量相似性，再结合平衡系

数与距离权重向量，将两种距离加权得到综合相似

度，实现对虚端子命名规则多维度、高精度的相似性

评估。式（1）为综合相似度模型。

d（A，B）=b·dedit（A，B）+（1-b）·dcos（A，B） （1）

式中：A、B表示两个待比较字符或中文描述；d（A，B）
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表示综合距离；dedit（A，B）为编辑距离；dcos（A，B）表示

余弦距离；b表示平衡系数。

文中为完成虚端子匹配构建了匹配模型。Lk 用

于表示第 k 个虚端子与某匹配 IED 设备所连接的虚

端子之间的连接关系，定义如下：

Lk ={ }V k
in,V

k
out = { }xk

in1,x
k
in2,⋯,xk

in5,x
k
out1,x

k
out2,⋯,xk

out5 （2）

式中：V in 代表该虚连接的输入虚端子；Vout 代表该虚

连接的输出虚端子。输入虚端子的五个命名元素分

别对应：设备中文描述（DES）、逻辑设备（LD）、逻辑

节点（LN）、数据对象（DO）和数据属性（DA）。若某

元素缺失，则其值为空字符串；输出虚端子 Vout 的五

个命名元素 Vout1 至 Vout5 同样分别对应 DES、LD、LN、

DO和DA。元素缺失时，同样以空字符串表示。

智能变电站的二次设备虚拟终端，分为输入虚拟终

端与输出虚拟终端。根据信号类型的不同，这两类虚拟

终端还能进一步细分为GOOSE输入/输出虚拟终端和

SV输入/输出虚拟终端[7]。在工程项目中可借助历史设

备配置方案或设备连接实例确定待匹配的智能电子设备

（IED）与其他二次侧智能电子设备（IED）之间的连接关

系。如果两台智能电子设备（IED）存在连接关系，则两

者的虚拟端子必须实现一一对应的匹配。因此，只要输

入虚拟终端完成匹配，所有输出虚拟终端也会随之达成

匹配。基于这一特性，可将待匹配智能电子设备（IED）

的虚拟终端，逐一与相连接智能电子设备（IED）的虚拟

终端进行对接，进而形成一组虚链接Aset，其定义如下：
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（3）

式中：Aset表示虚连接集合；t表示输入虚拟终端的数

量；g表示输出虚拟终端的数量；Vin和Vout分别标识智

能电子设备 IED虚拟触点的输入和输出。

基于虚连接集的生成，将待匹配的 IED的虚端子

匹配数据分为两部分：匹配数据Am和训练数据Atra。

配对数量中相似的数量为M，Am为式（4）定义：

Am =
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式中：LM
K 表示待匹配的同类型设备M第K个虚拟终

端的匹配数据。

虚连接集合Aset与匹配数据Am进行顺序计算，得

到所有可能虚连接与匹配数据的相似度，计算相似度

与匹配结果的公式如下：

ì

í

î

ïï
ïï

S ( Li
K,Lj

K) =
1

1 + d ( Li
K,Lj

K)·W

S = max
1 ≤ i ≤ d
1 ≤ j ≤ D

( Li
K,Lj

K)
（5）

式中：d、D表示与虚连接最佳相匹配的样本；S ( Li
K,Lj

K)

为Li
K和Lj

K匹配数据的相似度；Lj
K 为待匹配的同类型

设备 j第K个虚拟终端的匹配数据；Li
K 为待匹配的同

类型设备 i第 K个虚拟终端的匹配数据；d ( Li
K,Lj

K)为

Li
K 和 Lj

K 匹配数据的综合距离。W 表示影响权重系

数，由两种虚连接不同命名元素的综合距离对虚连接

相似度的影响，权重向量定义如下：

Aset = [ ]w1
in,w

2
in,⋯,w5

in,w
1
out,w

2
out,⋯,w5

out （6）

距离权重向量能够量化不同命名元素对综合相

似度的影响，通过距离权重向量计算匹配相似度，可

比较各个虚端子的相似度，最终找出最大相似度的虚

连接及其对应匹配样本。

2 计算权重向量

在虚连接的综合距离计算中，虚端子的各命名元

素对整体相似度存在不同影响，需要使用距离权重向

量W来量化不同元素的作用程度。为实现更精准的

相似度匹配计算，文中融合了编辑距离与余弦距离这

两种距离计算方式，以此综合考虑命名元素的特征。

考虑到同类 IED训练数据中，虚端子命名及虚连接具

有命名重复的特点且连接关系具备正确性，文中基于

这些训练数据构建了权重向量优化模型。该模型以

权重向量作为优化参数，同时设定了合适的目标函

数，进而运用SCHO-GO算法对权重优化模型进行求

解，最终获得距离权重向量的最优解。

假设训练数据集 Atra同类 IED 的数量为 R，根据

匹配模型，在所有 IED中任选其一作为待匹配设备，
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其余 R-1 个 IED 的虚连接构成其配对集。每一个虚

连接都表示为LK，而与正确 IED匹配的虚连接集合则

设为Dc，定义函数 ：

f ( Lk (W ) ) = {0, Lk (W ) ∈ DM (W ) ∩ Lk (W ) ∈ Dc

1, Lk (W ) ∈ DM (W ) ∩ Lk (W ) ∉ Dc

（7）

式中：f ( Lk (W ) )被用来判定 IED匹配结果是否满足

原有的虚连接数据为；Lk 为第 k个虚拟连接；DM (W )

为被选中 IED的虚连接数据。

函数W用于判断 IED匹配结果是否符合虚连接

数据，并基于此建立优化模型的目标函数。该优化模

型如式（8）所示。

maxG (W ) = G (w1,w2,⋯,w12)= ∑
∀Lk (W ) ∈DM (W )

f ( Lk (W ) )

{∑i = 1

10

wi = 1

0≤wi ≤ 0.3,i = 1,2,⋯,10

（8）

式中：wi 为对应权重；∀Lk (W ) 为任意第 k 个虚拟

连接。

目标函数G（W）是最大化 f ( Lk (W )的总和，即在

求解的距离权重向量 W 下，使得尽可能多的虚连接

匹配结果能够满足原有的虚连接数据，约束条件则是

各元素距离权重的上、下限。

双曲正弦余弦优化算法（sinh cosh optimizer，

SCHO）是 J Bai 于 2023 年提出的一种新型元启发式

算法，与粒子群算法等类似，SCHO 同样属于基于种

群的优化算法[8]。SCHO 算法的提出源于双曲正弦

（sinh）和双曲余弦（cosh）函数的特性。该算法主要包

含五个步骤，分别是初始化阶段、探索阶段、开发阶

段、有界搜索策略以及切换机制。在初始化阶段，生

成一系列随机的初始解；在探索阶段，算法通过特定

公式实现位置更新；在开发阶段，在较优解种局部精

细搜索；有界搜索过程中，在缩小的空间内重新生成

候选解；最后通过切换机制动态平衡探索与开发。

SCHO算法虽基于双曲函数的数学特性，在探索与

开发平衡方面表现不错，并具有较快的搜索速度与较强

的寻优能力，但它仍易过早收敛和陷入局部最优。为此，

文中将遗传算子引入双曲正余弦算法，提出一种改进的

SCHO-GO算法，以增强全局搜索能力。具体来说，在

SCHO的探索阶段和有界搜索策略中引入遗传算子，通

过对当前最优解和次优解进行变异、交叉、选择操作，扩

大潜在搜索空间的范围。变异、交叉、选择操作为：

变异操作：对当前种群中每个解向量的每个维度

分[0，1]内的随机数 r1、r2 ，将其与预设变异率r1比较；

若随机数小于 r1，则从预定义的 y或 z向量中选择元

素更新旧向量，变异公式如下：

yMu = {Po ,r1 > ρ1

y ,其他
（9）

zMu = {Po ,r2 > ρ t

z ,其他
（10）

式中：Po是当前解向量；y、z为预定义的变异候选向

量；r1变异率；yMu、zMu表示变异操作后的子代；

交叉操作：基于变异后的解向量，通过随机权重

系数 θ和 θ′进行线性组合生成新后代，如式（11）：

c = θ·yMu + (1 - θ′ )·zMu （11）

式中： c交叉操作后的子代。

选择操作：采用差分进化策略，比较父代与子代

的适应度值，通过贪婪选择保留更优解，公式如下：

Po i
t + 1 =

ì

í

î

ïï
ïï

yMu , f (yMu ) < f (Poi)

zMu , f (zMu ) < f (Poi)

c , f ( c ) < f (Poi)

（12）

式中：Po i
t + 1 表示第 t+1代第 i个解向量；f为适应度函

数；Poi表示第 i代父代解。

SCHO-GO算法的流程如图1所示。

图1 SCHO-GO算法流程图

3 算例验证与分析
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双绕组负载调压变压器，电压等级为 220/10 kV，在电

压等级 220 kV侧，采用了单母线分段接线方式，共设

有6回出线；在电压等级10 kV侧，则采用单母线接线

方式，并设有 16回出线。另外，变电站还安装了 3台

无功功率补偿器电容器和 2台站用变压器。智能变

电站各设备的详细信息如表 1所示。

表1 智能变电站各设备的详细信息

序号

1

2

3

4

5

6

7

8

9

10

11

12

设备名称

主变保护

主变测控

220 kV线路保护装置

220 kV母线分段保护装置

10 kV备自投切换装置

220 kV母线测控

主变非电量保护

220 kV间隔

220 kV线路间隔

220 kV母线分段间隔

220 kV母联间隔

主变低压侧间隔

设备型号

RCS-978TD1-DA-GCN

RCS-9705A-DA-1

RCS-931DA-GCN

RCS-9651A-DA-GCN

RCS-9705A-DA-4

RCS-978TD1-DA-GCN

RCS-2212MA

RCS-2241MA-DA-GZK

RCS-2241MA-DA-GZK

RCS-2241MA-DA-GZK

RCS-2241MA-DA-GZK

RCS-2241MA-DA-GZK

安装位置

预制舱

预制舱

预制舱

预制舱

预制舱

预制舱

智能柜

智能柜

智能柜

智能柜

智能柜

智能柜

根据文中所提模型，使用 SCHO-GO 算法得到

最优距离权重向量。每个匹配的智能电子设备

（IED）可选择 30 个同类型的虚拟连接数据作为匹

配集和训练集。然后将虚拟连接样本集分为训练

样本集（包含 10 个 IED）和匹配样本集（包含 20 个

IED）。通过使用所提模型与方法，求解得到 220 kV

主变压器保护的距离权重向量。所得的权重向

量为：

W=[0.174，0.103，0.037，0.168，0.062，0.021，0.085，0.131，0.183，0.073]T

此次选择需匹配的输入虚拟终端和输出虚拟终

端的数量为30个，完成所有匹配所耗时长为3 s，准确

率达到 100%。如表 2 和图 2 所示，与 FWA 和 SCHO

算法相比，在所训练的 IED数量下 SCHO-GO算法表

现为准确率最高且训练时间最短。由此得出，文中提

出的自动虚拟终端连接方法是更优的。变电站中部

分智能电子设备（IED）的虚拟终端自动连接结果如

表 3所示。根据表 3中的虚端子匹配结果，不同制造

商生产的同类型智能电子设备（IED）的虚拟端子命

名存在较小差异，以第 8个虚拟端子为例，自动匹配

结果和样本匹配结果分别为“C相保护电压2MUSV01/

UCTVTR1.Vol2”和“保护电压 C相 2MUSV/TVTR12.

VolChB”。然而，在 IEC 61850 标准规定下，借助虚

拟连接数据集，每个输入虚拟端子仍能正确连接

到对应的输出虚拟端子，从而确保自动连接结果

的正确性。

表2 不同算法准确率对比表
%

算法
FWA

SCHO
SCHO-GO

准确率
95.4
98.6
100

表3 部分虚端子自动匹配结果

序号

1

2

3

4

5

6

7

8

输入虚端子

MU额定延时PISV01/SVING‐
GIO1.DelayTrTime

A相保护电流PISV01/SVING‐
GIO4.SAVI1.Curlnst

B相保护电流PISV01/SVING‐
GIO4.SAVI2.Curlnst

C相保护电流PISV01/SVING‐
GIO4.SAVI3.Curlnst

断路器位置PIGO01/GOING‐
GIO1.DPCSO1.stVal

A相保护电压PISV01/SVING‐
GIO3.SAVI1.VolInst

B相保护电压PISV01/SVING‐
GIO3.SAVI2.VolInst

C相保护电压PISV01/SVING‐
GIO3.SAVI3.VolInst

自动连接的输出虚端子
额定延时

MUSV01/LLNO.Delay‐
TrTime

A相保护电流MUSV01/
PATCTR1.Amp1

B相保护电流MUSV01/
PBTCTR1.Amp1

C相保护电流MUSV01/
PCTCTR1.Amp1

断路器位置RPIT01/XC‐
BR1.Pos.stVal

A相保护电压2MUSV01/
UATVTR1.Vol1

B相保护电压2MUSV01/
UBTVTR1.Vol1

C相保护电压2MUSV01/
UCTVTR1.Vol1

安装位置
额定延时时间
MUSV/LLNO
DelayTrTime
保护电流A相

MUSV
TCTR1.Amp
保护电流B相

MUSV
TCTR2.Amp
保护电流C相

MUSV
TCTR3.Amp
断路器位置

RPIT/Q0XCBR1
Pos.stVal

保护电压A相
2MUSV

TVTR10.Vol
保护电压B相

2MUSV
TVTR11.Vol
保护电压C相

2MUSV
TVTR12.VolChB

图2 不同算法随 IED数量增加的耗时对比图

4 结语

文中提出了一种基于SCHO-GO算法与综合相似

度的虚端子自动连接方法。通过构建融合编辑距离

与余弦距离的综合相似度模型，有效量化了虚端子命

名中字符差异与语义关联，进而建立以距离权重向量

为优化变量、以正确匹配数最大为目标的优化模型，

并采用融合遗传算子的 SCHO-GO 算法进行高效求

解。以220 kV变电站为实例的验证表明，所提方法在

30个虚端子匹配中耗时仅3 s，准确率达到100%，显著

提升了连接效率与准确性。本方法在 IEC 61850标准

命名规范清晰、数据属性完整的工程场景中表现出

色，为智能变电站虚端子自动化连接提供了可靠解决

方案。未来，面向更大规模或数据质量不高的应用场

景，需要进一步进行研究。 （下转第28页）
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2）数据预处理需确保样本群体一致性与可比性，

应选取不少于30台同型或结构相近开关的色谱数据，

并考虑制造工艺、仪器差异，进行误差补偿；同时需控

制负荷波动、统一油温等运行参数，以消除气体溶解

与逸散行为差异，保证数据准确可比、统计可靠。

3）真空有载分接开关油色谱分析推荐采样操作

产气速率基线比较，同时研究提出以 H2/TDHG 比值

作为故障警示值，并据此推导出不同型号开关色谱分

析数据的预警阈值，实现更精准的状态评估与故障

诊断。
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