
输变电设备物联网技术

中国科学院上海微系统与信息技术研究所 郑 敏

一、物联网成为国家战略

2009年,8月7日,温总理考察中科院上海微系统所无锡中心,提出"感知中国"

电力物联网

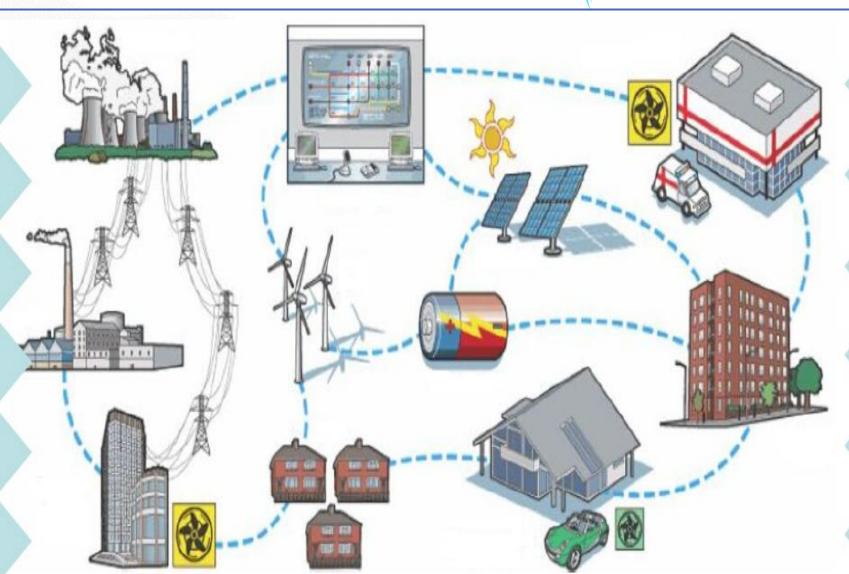
电气量

PMU

电能计量

物理

量


振动监测

倾斜监测

环境量

温湿度

风速风向

油色谱监测

状

态

量

行为

量

沉降监测

APP

视频监控

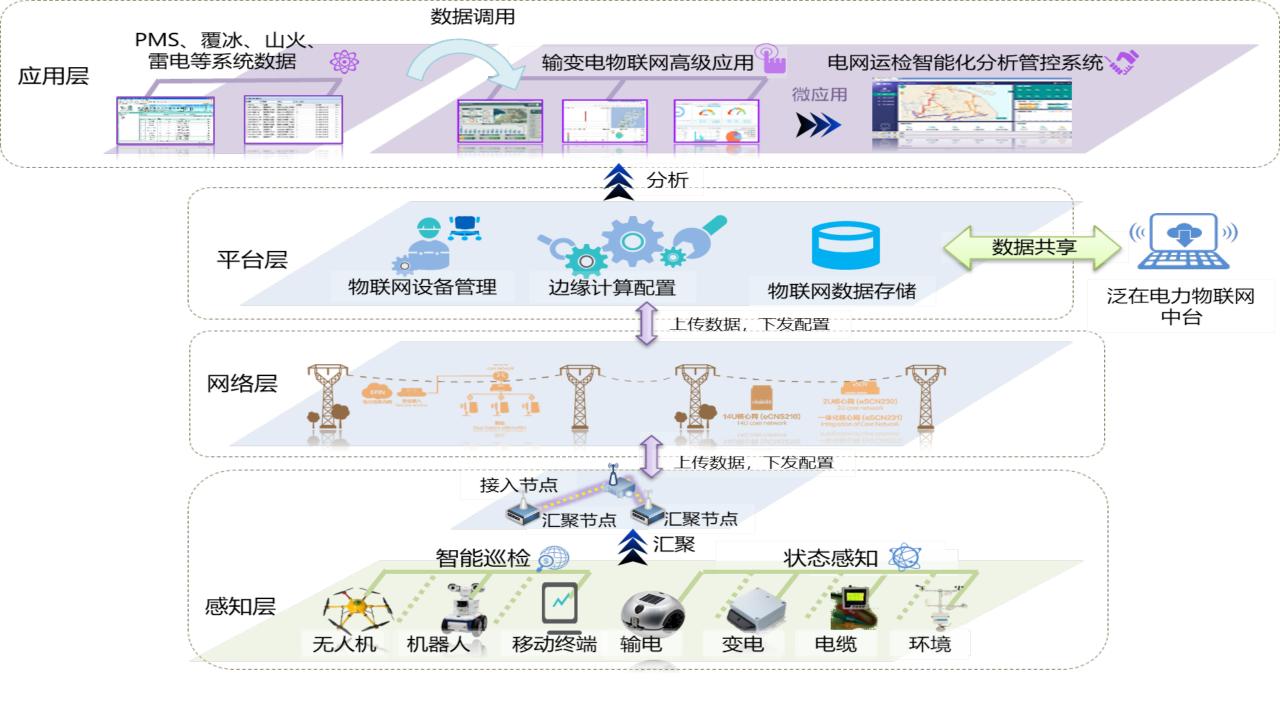
气象卫星

北斗定位

空间量

电力物联网

门类	典型传感终端类型	门类	对象	典型传感终端类型	门类	对象	典型传感终端类型
电源侧	定子温度监测、振动监测	新能源场站设备	风机轮毂及 叶片	振动监测、应变监测、 位置监测	132		温度、湿度、PM2.5、 CO ₂ 、光敏、振动、动作、 气压
	转子转速监测、振动监测、温度监测、匝 间短路监测		*1 <i>7</i> 7	风速风向、监测、压力 监测、位移监测、温度 监测	综立 宗 公 监 宗 本 求 上 响 则		
	机组电流监测、电压监测、功角监测、局 放监测、合闸监测保护		风机塔架及 机舱			能耗参数	电/水/气/热计费、压力、流量、温度、转速
	新能源场站电压、电流、功率		发电机及齿轮	温湿度监测、功率监测、			
电网运行 状态	电压、电流信号:PMU		箱	转速监测、压力监测		环境参数	温度、湿度、光亮
	行		111			负荷参数	电流、电压、压力、流量、 温度
	电网谐波、间谐波信号:宽频测量装置		太阳能板	倾角监测、污秽度监测			
负荷侧		新能源		光辐射、风速风向、温	智慧家 居 <u>监</u> 测	环境参数	温度、湿度、PM2.5、 CO ₂ 、光敏、振动、动作、 气压
	1	场站环 境	气象环境	度、湿度、压强			


輸变电设备物联网

□2019年,国网设备部,启动输变电设备物联网体系的 建设工作;

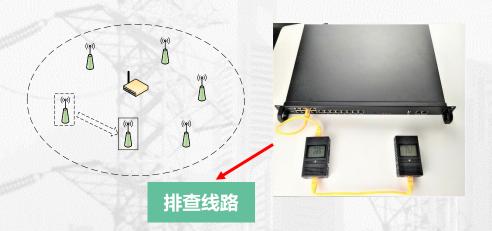
□以实现输变电设备状态信息感知、互联互通及智能化应 用的物联网

--引自Q/GDW 12021—2019《输变电设备物联网节点设备无线组网协议》

需求分析

- ■通信体制如何选择?
- ■如何解决长期无人值守,功耗问题?
- ■如何实现统一接口互联互通?
- ■网络信息安全如何保障?
- ■支持哪些特殊的业务?

通信体制如何做选择?



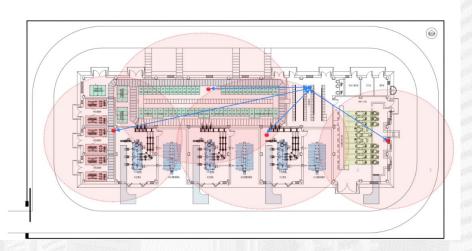
有线业务向无线方式切换的迫切性

灵活性和移动性

- 有线网络:传感器设备的安放位置<mark>受网</mark> 络布线的限制
- 无线网络:设备在无线信号覆盖区域内 的任何一个位置都可以接入网络,同时 支持设备的移动

故障易定位

- 有线传感器:若出现物理故障,尤其是由于**线路连接不良**而造成,很难查明,而且检修线路需要付出很大的代价
- 无线传感器:很容易定位故障,最坏情况只需**更换传感器**即可恢复连接



故障随时更换

安装便捷

- 有线通信网络: 大量网络布线
- 无线通信网络:只要安装部署一个或几个节点设备,就可建立覆盖整个区域的无线网络

110kV户内 GIS变电站物联网网络图 (典设编号: 110-A2-6)

物联网通信技术分类

有线通信

ETH

HPLC

Mod-Bus

感知层通信的协议设计

中国科学院上海微系统与信息技术研究所

nghai Institute of Microsystem and Information Technology Chinese Academy of Sciences

频段合法化

> 频段合法性: 满足无委会的微功率频段使用规定, 选用2.4GHz

| 频段和470M~510MHz频段, 具体发射功率限值、单次发射持续时间、

占用带宽、频率容限均满足无委会无线电管理要求

微功率短距离无线电发射 设备目录和技术要求

一、设备目录及其技术要求

(一) 通用微功率设备

1. A 类设备

(1) 使用频率: 9-190kHz。

(2) 10 米处磁场强度:

9-50kHz: 不大于 72dBμA/m (准峰值检波);

50-190kHz: 不大于 72dBμA/m, 每倍频程下降 3dB (准 峰值检波)。

2. B 类设备

(1) 使用频率: 1700-2100kHz、2200-3000kHz、

3100-4100kHz, 4200-5600kHz,

5700-6200kHz, 7300-8300kHz,

8400-9900kHz

(2)10米处磁场强度:不大于9dBμA/m(准峰值检波)。

(3) 频率容限: 100×10-6。

(4) 6dB 带宽: 不大于 200kHz。

3. C 类设备

(1) 使用频率: 6765-6795kHz、13553-13567kHz、

遵从无委会微功率频段管理要求,确保合法合规

物联网通信技术全景

技术	无线	授权频段	低时延	低成本	高速率	功耗	产业链成熟 度
LoRa	V	-	-	\checkmark	-	√	V
NB-IOT	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark
ZigBee	V	-	-	\checkmark	-	√	√
6LowPan	V	-	-	\checkmark	-	√	-
BLE	V	-	\checkmark	\checkmark	-	√	√
4G	√	\checkmark	\checkmark	-	\checkmark	-	\checkmark
5G	√	\checkmark	V	-	\checkmark	-	√
Wi-Fi	√	-	\checkmark	\checkmark	\checkmark	-	\checkmark
230M-LTE	V	-	V	-	\checkmark	-	-
1.8G-LTE	\checkmark	-	\checkmark	-	\checkmark	-	-
ETH	-	-	-	-	\checkmark	-	V
HPLC	-	-	_	-	-	-	V
Mod-Bus	-	-	-	-	-	-	V

■现有通信体制,无法直接应用;

■需要考虑频段、部署难度(成本)、技术成

熟度、功耗等。

如何解决长期无人值守, 功耗问题?

低功耗需求

■没有可以满足如此极端功耗需求的现成通信体制;

■通信在传感终端功耗占比很大;

■需要通信与设备工作机制共同优化,系统性降低功耗。

如何实现统一接口互联互通?

统—体制

缺乏全局设计及标准化,难以互联互通和替换

无线传感网协议、规约不统一

不同厂商产品无线传输协议、数据规约不统一,广泛采用"私有"体制。

- ▶传感器与网络设备"牢牢绑定",传感网系统重复建设,形成若干"烟囱"
- ▶传感器扩展接入、传感器备品更换自由度低
- >主要是没有可以统一遵守的标准

■制定统一的感知层无线通信协议标准;

■进行协议一致性测试,确保入网设备符合标准。

网络信息安全如何保障?

电力无线的安全可靠性

适配电力业务的安全

通用安全方案存在功耗过高、复杂度高的问题"

需要与定制化的通信协议适配

需要与电力业务结合,进行分级处理

需要采用轻量化注册、鉴权、加解密等方法流程

■轻量化的安全协议;

■专用的通信体制,降低被入侵的可能性;

支持哪些特殊的业务?

有哪些特殊业务需求

特殊需求

支持感知层网络内部, 内生自同步;

密集接入;

节点自组织组网;

■基于低功耗窄带通信技术物理层(lora、zigbee),

在非授权频段,定制低功耗、安全、自组织、密集接

入的专用无线通信协议,形成标准,并进行一致性测

试。

不考虑宽带业务

■视频

■巡检机器人

■无人机

窄带传感器分类

序号	传感器种类	发射频次	报文大小(Byte)
1	温度传感器	5分钟	24
2	温湿度传感器	5分钟	29
3	水浸传感器	5分钟	28
4	形变传感器	5分钟	28
5	微风振动传感器	10分钟	1024
6	舞动振动传感器	30分钟	2424
7	杆塔振动传感器	12分钟	2424
8	特高频传感器	24小时	14450
9	高频传感器	24小时	14450

数值类传感器:

> 发送频次较高

> 功耗要求严苛

数值类传感 器接入技术


波形类传感器:

> 发送频次较低

> 业务数据量大

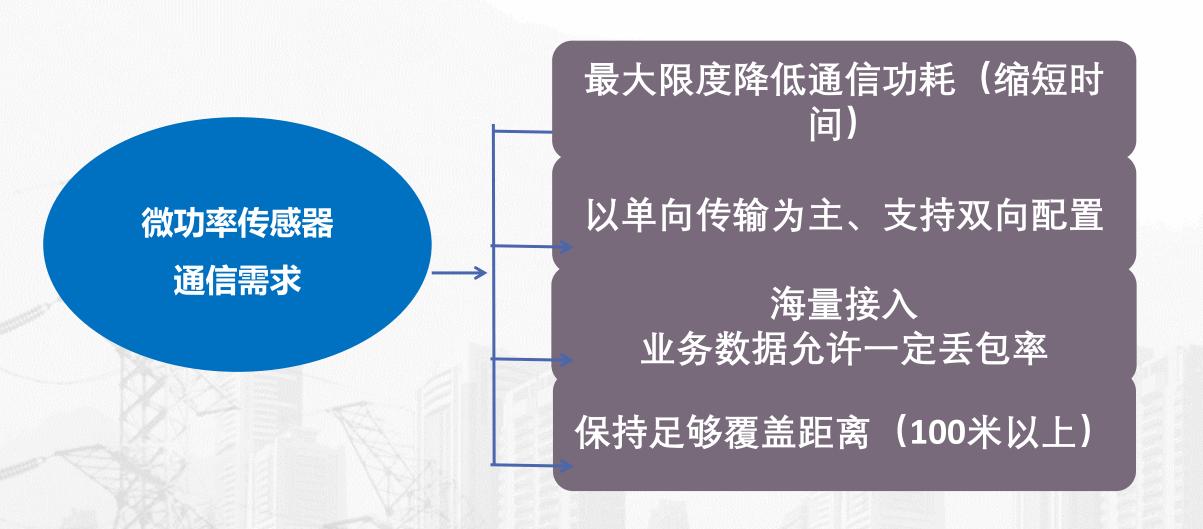
> 可靠性要求较高

波形类传感器接入技术

物理层选择

物理层选型

▶ 通信体制选型:基于传感器主流厂家的工作基础,选用LORA、BLE、ZigBee物理层方式,既可以可满足窄带物联网业务需求,也可兼容当前主流传感器厂家的硬件配置;



LORA、BLE、ZigBee的通信芯片具备 低功耗的特点,其休眠电流小于1uA,同时 发送功率和接收功率为数十mA级别;

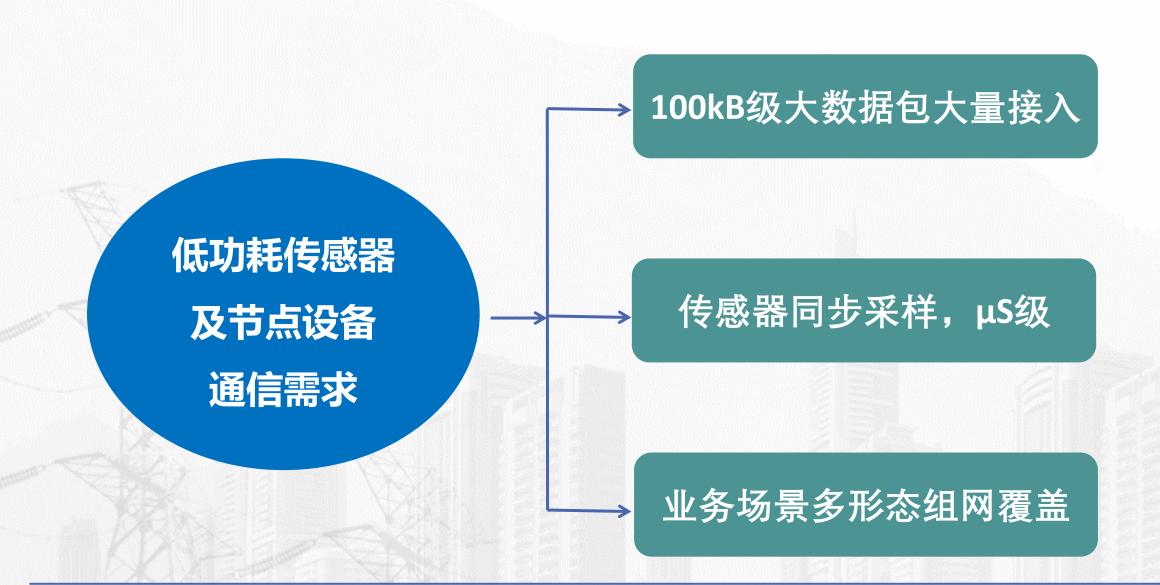
使用成熟的通信底层,确保完整芯片产业链支持

协议设计——微功率

协议设计——微功率

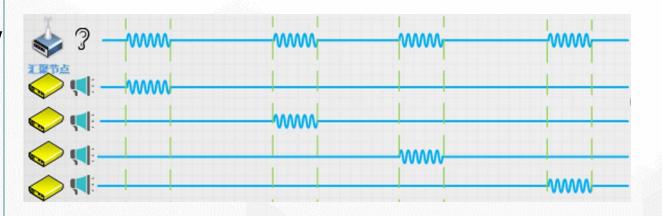
节能机制: 异步通信方式,由传感器发起的随机通信,因此传感器无需监听节点消息,可以绝大部分时间处于休眠状态。

- 单向上报为主:对于主要的普通检测数据,在消息信道采用单向上报模式,最小化传感器工作时间;
- ▶ 非实时双向配置:在控制信道实现双向通信,支持对 传感器周期、阈值等配置。



▶ 告警机制:在控制信道上报,设置重传机制,节点反馈确认信息,提高了告警业务的可靠性。

协议设计—节点组网

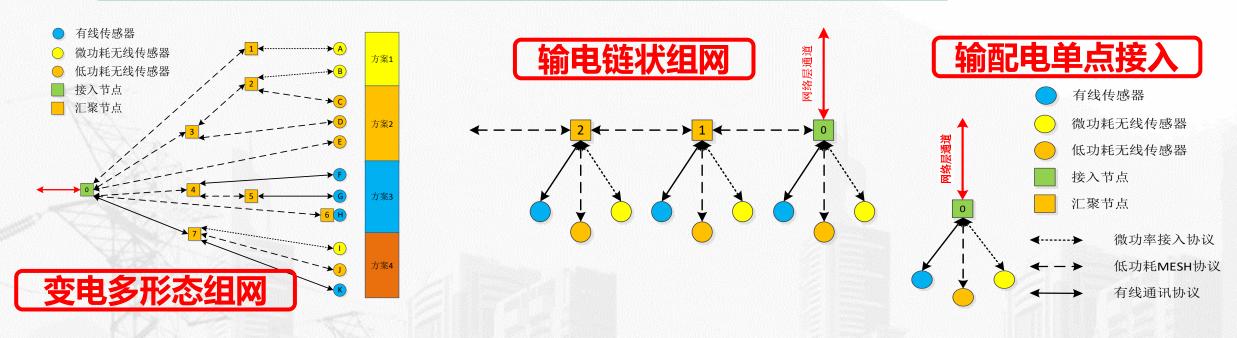


协议设计—节点组网

链路层

- 同步通信方式:由节点发起的调度通信, 采用时隙调度方式(TDMA),可避免 通信碰撞,提高信道利用率;
- 组报分片机制:对大数据包进行化整为零的分片传输,又可对多个小包数据化零为整的组包传输,提高了信道利用效率和传输正确率。
- > 统一的DRX指令机制:参照NB-IOT的设计思路,节点统一调配传感器休眠、唤醒时间

▶ 时间同步机制: 节点采用多播通信信道,可控制多个传感器的同步采集,同步精度在10us内,且同步功耗极低(工作状态mA级)。

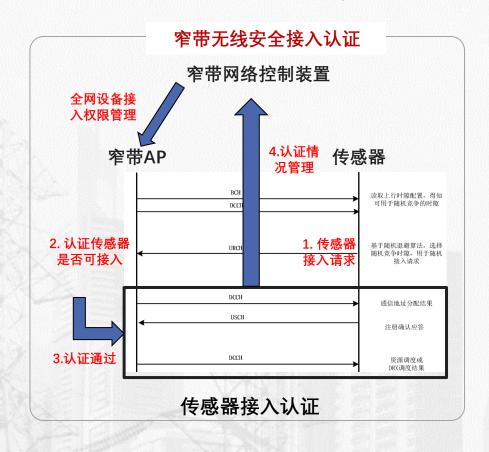


协议设计—节点组网

网络层

节点间多跳组网:支持链状、树状等网络拓扑,满足输变电等业务场景组网需求;

满足输变电多种形态可靠组网需求



安全接入要求和规范

基于国网标准的全网设备接入权限管理,技术合规、安全、可信、自主可控

- 智慧物联体系安全防护方案的通知 (国家电网互联【2021】24号)
- 输变电设备物联网通信安全规范 (Q/GDW 12186-2021)

应用轻量级身份认证技术,使用预先 设置身份ID作为无线窄带AP和无线传 感器设备的身份凭证,防止仿冒设备 接入。

轻量化低功耗设计

(共4项)

电力无线传感网系统 检测结果

报告编号: B21X40189

共 9 页 第 6 页

序号	检验项目	单 位	标准与要求	检验结果	检验 结论
----	------	--------	-------	------	----------

- 一、性能指标
- 1、《电力无线传感网接入性能检验技术要求》
- 2、《电力无线传感网组网性能检验技术要求》
- 3、《电力无线传感网时间同步精度检验技术要求》

电力无线传感网接入性能						
1	微功率模组 平均通信功耗	μW	2.4GHz 单纯数据发送 每10分钟上报25字节 平均功耗 < 10µW	5. 33	合格	
	电力无线	线传感	网组网性能(多跳组网性能、单数	兆最大距离)		
2	多跳组网性能		在 10 个汇聚节点的中继的网络中 传感器数据能够正常传输	可以正常传输	合格	
3	单跳最大距离	-	在接入节点和汇聚节点相距 1.5km 情况下,汇聚节点连接的 传感器数据能够正常传输	可以正常传输	合格	
	电力无线传感网时间同步精度					
4	低功耗传感器 时间同步误差	μS	同一汇聚节点下 两个传感器的同步时间误差 小于 1. 25µS	1. 242	合格	
备注:						

平均通信功耗,为发射机在每个周期内发射时的功耗平均到完整周期的结果。 传感器同步误差测试结果,为采集3600个有效同步中同步误差的最大值。 5.33µw

传感器寿命:

$$T = \frac{0.6 \times 0.25 \times 3600 \times 3.6}{1.2 \times 365 \times 24 \times 3600 \times 5.33 \times 10^{-6}}$$

= 9.63 > 8\pm

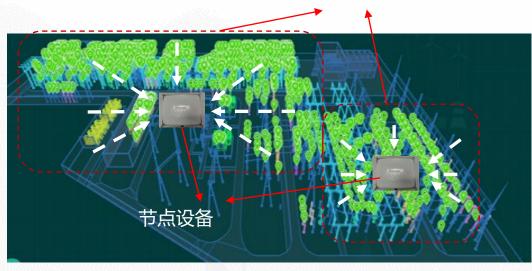
微功率模式功耗

温湿度传感器

3.6V 纽扣电池 3min上报周期 寿命10.04年

电池型号	TLH-2450	电池容量	0.55Ah
推荐每日发送次数	480 次(3min/次)		
电池使用寿命计算 值	10.04 年		

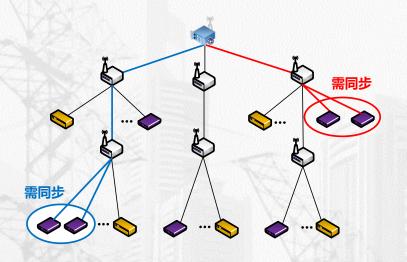
微功率标准协议下的传感器综合功耗测试 (通信功耗+采集功耗)



• 接入容量验证

设备类型	接入数量
数值类传感器	单网万级以上
波形类传感器	单网干级以上

现场传感器大容量接入


高精度同步

关键技术

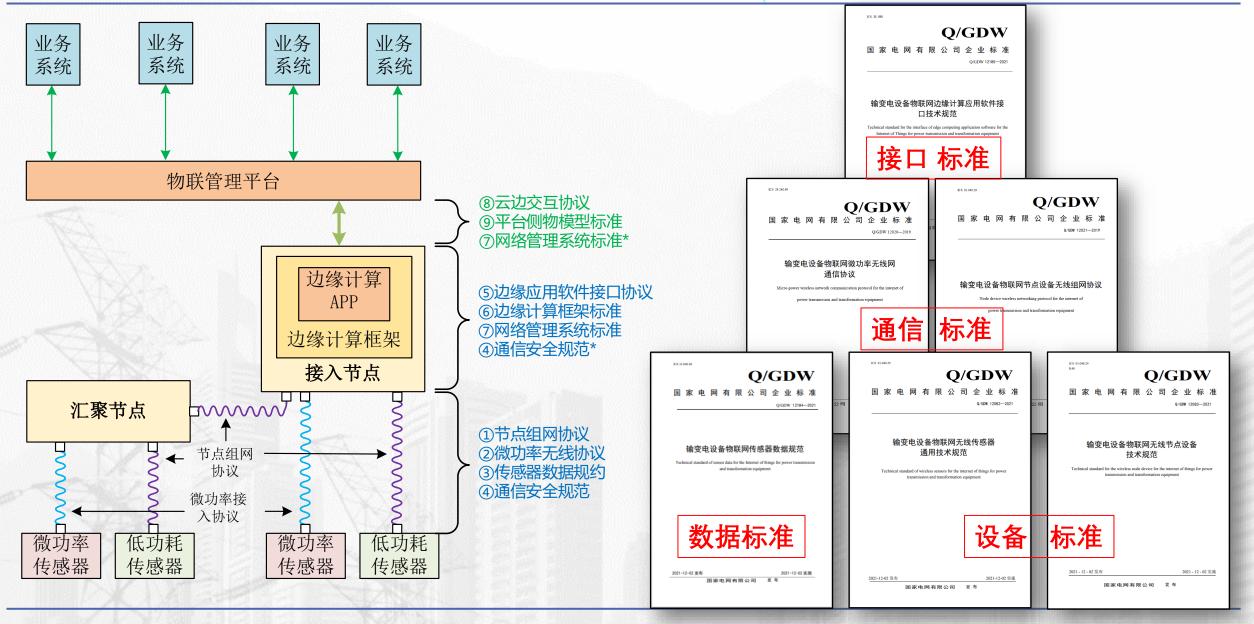
内生自同步技术

• 对时通信零功耗: 以内在同步通信为载体低延迟逐级传递时标

• 时标匹配迭代修正: 迭代修正时钟漂移带来的同步误差

检测结果 (泰尔)

- 域内同步误差**小于1.25μs** (<**10μs**)
- 域间同步误差小于10μs


LoRaWAN和NB-IoT均不具备同步采集能力

标准体系建设

中圈科学院上海微系统与信息技术研究所

anghai Institute of Microsystem and Information Technology Chinese Academy of Science:

设备—节点类

网关节点

汇聚节点

参数	性能指标		
发射功率	17dBm		
最佳接收灵敏度	-123dBm		
带宽	500kHz		
扩频因子	5~9		
可配置频点	470MHz-510MHz		
传输距离	100m~500m (变电站) 1000m~2000m (架空线 路)		
最大传输速率	58Kbps		
发射功率	17dBm		

通信模组

低功耗无线通信模组

介绍:

低功耗无线通信模组是一款针对电信、电力、工业等物联网行业应用领域推出的基于470MHz LoRa 的通信模组,具有超低待机功耗,休眠工作电流小于2.0uA。模组支持标准低功耗协议的工作模式,支持 LoRa/GFSK 调制方式,可实现串口到标准协议的数据互转。

微功率无线通信模组

介绍:

微功率无线通信模组是一款针对电信、电力、工业等物联网行业应用领域推出基于 2.4GHz LoRa 的通信模组,具有超低待机功耗,休眠工作电流小于2.0uA,模组支持标准微功率协议的工作模式,支持 LoRa/GFSK 调制方式,可实现串口到标准协议的数据互转。

协议一致性检测

标准认证测试

微功率协议一致性测试

节点组网协议一致性测试

传感器数据规约一致性测试

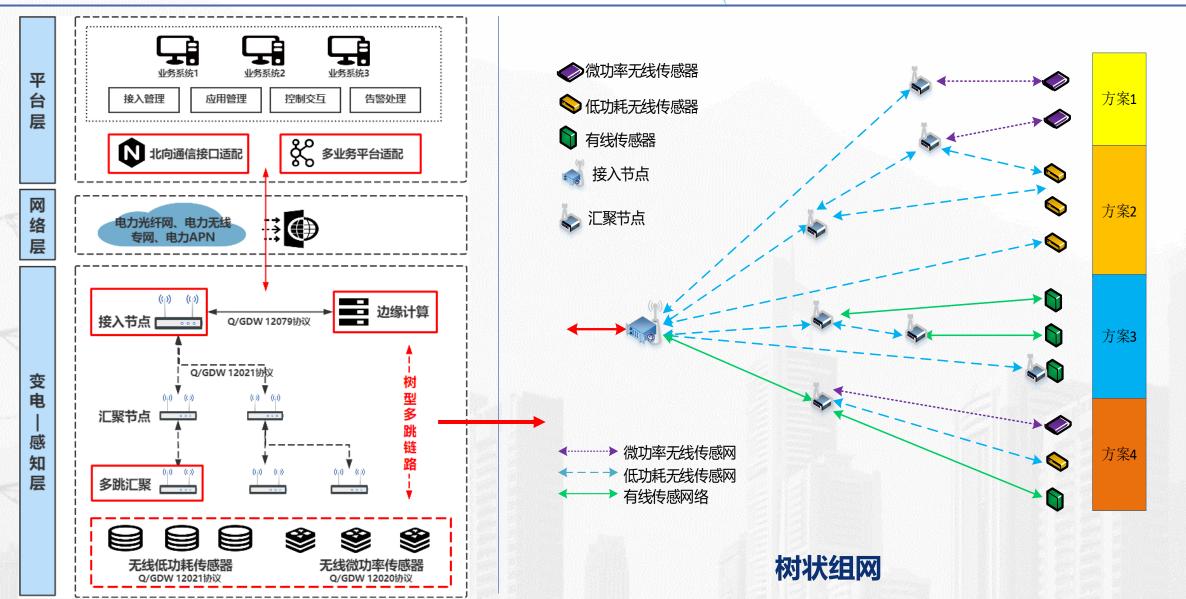
传感网管理功能及接口测试

边缘计算框架功能及接口一致性测试

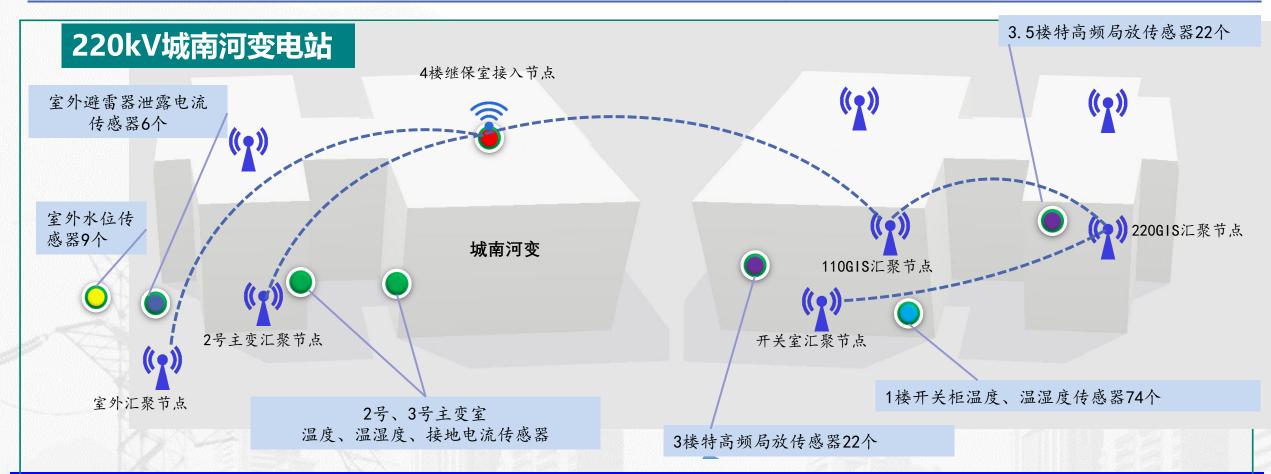
边缘计算应用软件接口一致性测试

无线传感网系统一致性测试

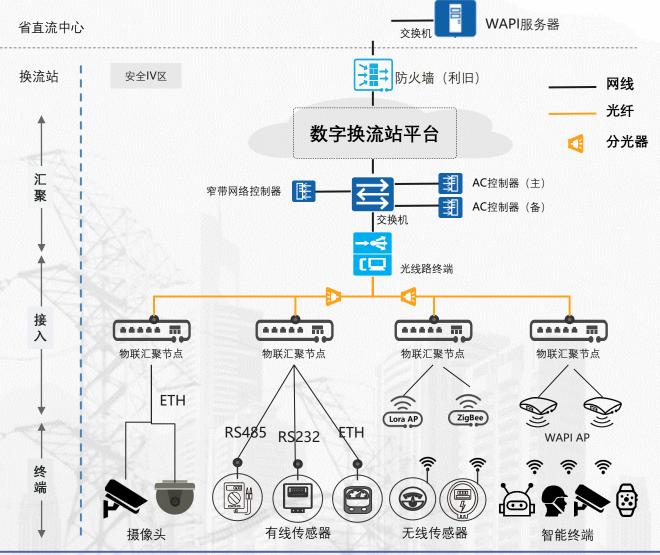
边缘计算系统一致性测试



输变电设备物联网系统组成



典型应用场景 (220kV站)


"星型网络" + "多跳网络" 的混合网络进行数据传输 组网方式的灵活选取增强了网络的可靠性和现场适应性

典型应用场景 (换流站)

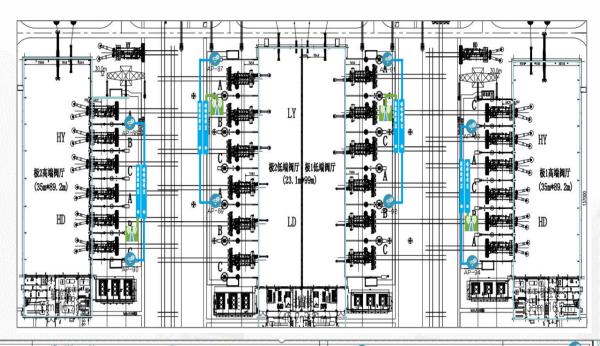
宽带、窄带、有线混合的换流站网络

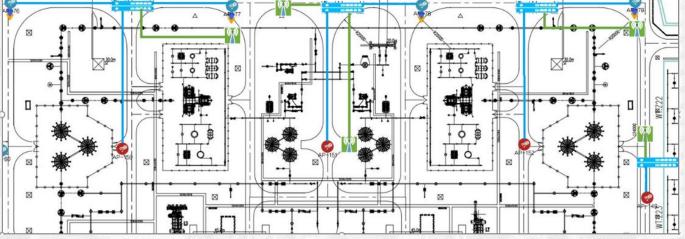
物联网络属于换流站内本地通信网络,用于传感终端、无线基站、物联汇聚节点、边缘物联代理等站内物联设备间的通信,可**覆盖各类物** 联感知终端的接入诉求,采取宽窄带无线和有 线光网混合组网的技术路线。

宽带无线:满足移动性、大带宽、广连接的物 联网应用场景;

窄带无线:满足大连接、低速率、低功耗的物 联网应用场景;

有线光网:满足多业务一网承载、多业务隔离、超大带宽的回传网络建设需求。




典型应用场景 (换流站)

网络规划

所属区域	区域类型	窄带AP数量
	室外开阔区域	(合) 4
	室外遮蔽区域	5
	室外遮蔽区域	4
1000kV交流滤波器场	室外遮蔽区域	7
———————————————————— 调相机区域	室外遮蔽区域	2
500kV交流滤波器场	室外遮蔽区域	3
主控楼	室内区域	3
极丨辅控楼	室内区域	1
极Ⅱ辅控楼	室内区域	1
调相机室	室内区域	1
GIS室	室内区域	6
阀厅	室内区域	/
合计		37

应用情况

典型应用赋能效果

温度传感替代运维人员红外普测

实时监测三相温度,人工根据 告警信息进行现场复测;在一个 220kV变电站,单次红外普测工作 可**节省约1小时**

特高频传感替代检修人员局放检测

分析比对开关柜局放感知数据, 出现异常告警后,人工根据告警信 息进行现场复核消缺,实现人工局 放检测工作的**全面代替**

水浸、水位传感替代防汛排查

实时监测电缆沟/层积水情况, 缓解汛期人工普查压力,**解决**异常 发现相对**滞后问题**,保障电缆运行 环境安全稳定

三箱温湿度传感替代巡视开箱检查

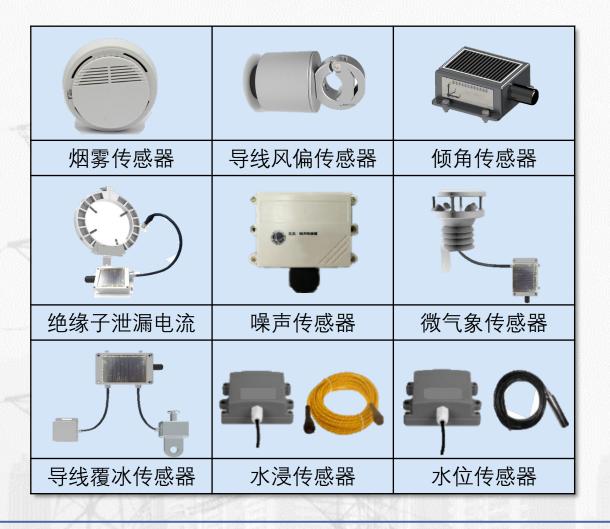
优化全面巡视作业方式,由开 箱普查改为对10%的三箱进行抽查, 运维人员只需对产生告警信号的三 箱进行核查,时间可**缩短约50分钟**

智慧替代成效

减少设备运检工作量 提升缺陷隐患发现及时率

机械化作业时间减少约80%

已形成变电站典型设计


输变电设备物联网体系+标准 ———— 体制应用 ———— 规范化

- (1) 变电站典型设计系统 在国网基建部联合中电工程开展的典型设计工作 (2005) 中, "标准体系"的应用可通过全站设备监测进一步提升集约化管理水平,系统性和规范性的优势将帮助提高维护的工作效率,通过无线传输可进一步降低变电站建设和日常运行维护成本,贴合"多快好省"的目标。
- (2) 智慧变电站 在国网设备部开展的智慧变电站建设(2017)中,标准体系的应用使得智慧变电站的一系列功能如设备状态全息感知、倒闸操作一键顺控、设备缺陷主动预警、数字化远传表计等功能更加"智慧",其无线性、系统性将帮助真正实现无人值守,更加符合"有利于电网更安全,有利于设备更可靠,有利于运检更高效,有利于全寿命成本更优"的原则。

数值类传感器

波形类传感器

控制类传感器

开关控制传感器

智能门锁控制器

空调/除湿机控制器

未来演进:核心标准演进

一、国网企业标准

2020年11月,2项核心标准正式发布 2021年11月,8项系列标准正式发布 2023年,正在修订3项核心标准

二、电力行业标准

2022年底,完成3项标准的报批评审 2023年,拟发布

三、国家标准推进

2020年6月起持续推进

- ✓ 全国信标委物联网分技术委员会 (SAC/TC 28/SC 41)
- ✓ 《输变电设备物联网感知层的无线通信协议》

四、国际标准

ITU标准:

2022年底,ITU标准立项

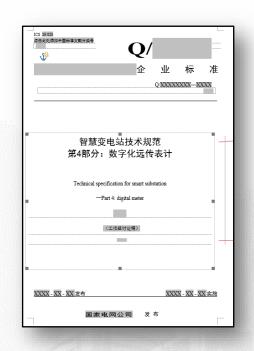
IEEE标准:

2023年初,P3363标准立项

2023年9月,召开标准启动会

IEC标准:

2023年,参加TC58标委会提案评审


未来演进:标准体系拓展

智慧变电站

应用1: 数字化远传表计 取代高耗能无线和有线数据传输的方式, "标准 体系"的应用将实现极低功耗的无线传输和更规范的数据信息。固定周期和告警触发相 结合的数据采集模式使得设备精益运维得到进一步提升,将更加有效的保障设备安全。 2023年9月,中国电科院已完成第二批数字化表计的检测。

应用2: 智能防误系统"标准体系"助力智能防误一键顺控系统,远方一键 顺控比传统倒闸操作用时减少80%以上,送电过程操作项目由189项下降到32项,送电 操作时间由80分钟降低到19分钟。降低安全风险,提升操作效率和供电可靠性。

未来演进: 网络能力提升

难

输电线路

- 大跨度+无信号
- 外部及输电线 (负载) 的电磁干扰
- 节点太阳能供电(阴雨30天工作)

变电站

- 墙壁+隔离+大型设备(金属体)遮挡
- 环境及电力**设备本体的电磁干扰**

1km

高可靠动态级联

关 键 技 术

- 多跳同步组网+树状下行广播
- 节点零路由维护的报文自适应传递
- 能耗均衡的全域同步休眠机制
- 频谱感知+链路评价的拓扑自维护

指	指标	本系统	LoRaWAN	NB-IoT
标	单网覆盖	30km	15km	10km
目	节点功耗	92mW	594mW	>100W
	在线率	>98%	-	-
标	网络自愈	<30秒	5分钟	无抗干扰

大幅优于

■总结:形成了支持低功耗、密集接入、动态级联

组网、内生同步的统一窄带无线物联网感知层通

信体制,支持一致性测试,进行了广泛试点,生

态成熟, 总部已在推动全面建设。

我所介绍和建议

上海微系统与信息技术研究所

前身 1928年 - 国立中央研究院-工程研究院

■ 两大学科领域

信息与通信工程、电子科学与技术

■ 五个学科方向

宽带移动通信、无线传感网、微系统技术、 微波毫米波技术、信息功能材料与器件

■ 系统为牵引、系统带器件、器件带材料 — 创新价值链

系统

军用宽带通信

微小卫星

无线传感网

器件

微机械惯性传感器、微波毫 米波集成电路、痕量爆炸物 探测器、微型甲醇燃料电池

材料

SOI材料、中红外光电子材料与器件、Thz物理与器件、相变存储器

传感技术联合国家重点实验室 /微系统技术重点实验室

信息功能材料国家重点实验室

院太赫兹固态技术重点实验室

无线传感网实验室

物联网系统技术实验室

宽带无线技术实验室

新能源技术中心

超导实验室

上海微系统所已建所90多年,是我国信息功能材料、集成电路、 MEMS传感器、传感与通信等技术领域的战略科技力量,是物联网 研究的发源地

1999年,在国内率先开展了物联网研究

2006年,中科院无线传感网与通信重点实验室成立

2006年,发起"上海传感网产学研联盟"

2009年,温家宝视察微系统所物联网研发中心

2009年,成为地面ZC传感网总体单位

2012年,成为宽带技术总体单位

2017年,福州物联网开放实验室挂牌

2018年,孵化电力产业公司上海遨有信息技术有限公司

2019年,孵化的瀚讯公司成功登陆创业板

科研单元

建议与承诺

- ■开展变电站物联网建设工作
- ■开展一致性测试,保证装备的一致性
- ■共同推进后续输变电物联网体制修订和演进工作
- ■共同研究未来电力物联网关键技术,以及新型传感器
- ■微系统所愿在技术、人才、学术资源、装备系统等方 面给予全力支撑和配合

■欢迎各位到上海所里参访指导!

谢谢, 敬请批评指正!